Question			Answer				Marks	Guidance
1	(a		diode (1) (diode) has a high resistance in one direction and a low resistance in the other (1)				2	allow LED (1) allow current flows one way only (1) allow threshold voltage / current idea (1)
	(b)	(i)	A B C output 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 $\mathbf{0}$ 1 0 1 $\mathbf{0}$ 0 1 1 $\mathbf{0}$ 1 1 1 $\mathbf{0}$				1	all four zeros needed
		(ii)	dark / not light (1) hot / wet (1)				2	allow night(time) / dim (1)

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| (iii) | any two from:
 fan needs a large current / voltage to operate (1)
 logic gates use low current / voltage (1)
 logic gate would be damaged if connected (directly) to
 mains (1)
 relay switches on a high current / voltage by using a low
 current / voltage (1) | 2 | allow isolation idea of logic gate from fan (1) | |

Question		Answer	Marks	Guidance			
$\mathbf{2}$	(a		$\begin{array}{l}\text {...flows from P to S and through the resistor or to T (1) } \\ \text {...flows from R to S and through the resistor or to T(1) }\end{array}$	2	ignore current paths after T		
ignore current paths after T						$]$	(b)
:---							

Question			Answer	Marks	Guidance
3	(a)	(i)	$24+/-4 \text { scores }(2)$ But if answer is incorrect or incomplete: correct plotting of both points (1)	2	tolerance for points is $+/-1 / 2$ a square
		(ii)	as distance increases current falls scores / AW / ORA (1) BUT current falls quickly at start but less quickly for greater distances / AW (2) OR as distance doubles current is quartered (2)	2	ignore stronger or weaker current allow inverse square law (2)
		(iii)	light diverges / spreads / becomes less intense / AW /ORA(1) or light intensity follows an inverse square law / AW (1)	1	(when closer) more energy /photons/ light hits solar cell / AW / ORA (1)
	(b)		Electrons knocked / released or freed (1) BUT electrons knocked / released or freed from silicon (2) electrons move (around the circuit) (1)	2	
			Total	7	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{4}$ | (a) | energy / light absorbed by photocell / silicon / crystal (1)
 electrons are knocked loose (from the silicon atoms in the
 crystal) (1)
 idea of (free) electron flow / electrons released which
 creates an electrical current (1) | allow higher level answers
 eg photons absorbed (1)
 not just light hits
 not merely 'electrons released' or 'electrons lost' | |

Question	Answer	Marks	Guidance
(b)	(Level 3) Answer shows a sensible detailed or quantitative prediction and explanation and a clear workable plan involving clear fair testing. Quality of written communication does not impede communication of the science at this level. (5-6 marks) (Level 2) Answer shows a sensible prediction or explanation and a clear workable plan involving clear fair testing. Quality of written communication partly impedes communication of the science at this level. (3-4 marks) (Level 1) Answer shows a sensible prediction or a basic workable plan. Quality of written communication impedes communication of the science at this level. (Level 0) Insufficient or irrelevant science. Answer not worthy of credit. (0 marks)	6	This question is targeted at grades up to \mathbf{A}^{*} Relevant points(with plan as level 2) indicative of level 3 include - (prediction / explanation) quantitative or more detailed eg double area double output eg double diameter / length - quadruple output eg more area so more light absorbed and more output eg results in more electrons being knocked loose from the silicon atoms (in the crystal) Relevant points indicative of level 2 include: - (clear workable plan) eg measure the current / voltage produced eg use light of the same intensity / same distance from solar cell eg measure the diameter of each photocell to calculate the surface area of each - (sensible prediction / explanation) eg larger photocells more light falls on them eg larger photocells give more output Relevant points indicative of level 1 include: - (workable plan) eg shine light / Sun on photocells and measure output eg compare output of different cells or - (sensible prediction / explanation) eg larger photocells more light falls on them eg larger photocells give more output
	Total	9	

Question	Answer	Marks	Guidance
$\begin{array}{ll}\text { L } & \text { a } \\ & \\ \text { C } & \\ 0 & \\ M & \\ M & \\ O & \\ \text { N } & \end{array}$	(full calculation): ($720-240 p=) 480$ p or $£ 4.80$ and Habib is correct scores [3] if numerical answer above is incorrect or incomplete then: cooker: $2 \times 6 \times 20 p=240 p$ [1] immersion heater : $3 \times 12 \times 20 p=720 p$ [1] or use of 2×6 and 3×12 [1] use of $x 20 p$ [1]	3	answers acceptable in pence or pounds allow $720-240 p=480 p$ with no comment [2] allow $720-240 p=480 p$ and Habib is correct [3] allow $£ 4.80$ with no comment [2] allow $720-240 p=480 p$ [2] allow $£ 4.80$ and Alice is correct [2] Other acceptable full calculations: But $£ 2.40+£ 5.00=£ 7.40$ and this is near to $£ 7.20$ so Habib is correct [3] OR $2 \times £ 2.40=£ 4.80$ which is less than $£ 7.20$ so Habib is correct [3] Only award 3 marks if Habib is identified along with a full calculation

b	(at a voltage of $4.00 \times \mathbf{1 0}^{5}$) $5(.00) \times 10^{3}$ or $5000(\mathrm{~A})[1]$ (at a voltage of $2.75 \times \mathbf{1 0}^{5}$) 7.273×10^{3} or 7.273×10^{3} or 7273 or $7272(\mathrm{~A})[1]$	3	for higher voltage allow 7270

